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Grease ice is an agglomeration of disk-shaped ice crystals, named frazil ice, which
forms in turbulent waters of the Polar Oceans and in rivers as well. It has been recog-
nized that the property of grease ice that it damps surface gravity waves could be
explained in terms of the effective viscosity of the ice slurry. This paper is devoted to
the study of the dynamics of a suspension of disk-shaped particles in a gravity wave
field. For dilute suspensions, depending on the strength and frequency of the external
wave flow, two orientation regimes of the particles are predicted: a preferential orienta-
tion regime with the particles rotating in coherent fashion with the wave field, and a
random orientation regime in which the particles oscillate around their initial orienta-
tion while diffusing under the effect of Brownian motion. For both motion regimes,
the effective viscosity has been derived as a function of the wave frequency, wave
amplitude and aspect ratio of the particles. Model predictions have been compared
to wave attenuation data in frazil ice layers grown in wave tanks.

1. Introduction
Grease ice is a thin slurry of disk-like platelets of ice crystals, called frazil ice, which

forms in supercooled waters of the Polar Oceans under cold and windy conditions.
Frazil disks measure approximately 0.1–0.4 cm in diameter and 1–100 µm in thickness
(Kivisild 1970). Grease ice can accumulate up to tens of centimetres thick and signi-
ficantly affect ocean surface roughness by attenuating short waves. This effect has
been widely documented by observations of early whalers. Furthermore, synthetic
aperture radar imagery of grease ice appears dark because of the suppression of
the gravity–capillary waves resonant with the incident microwave radiation (1–10 cm)
(Wadhams & Holt 1991).

Laboratory measurements of wave propagation in grease ice show that wave
attenuation can be explained in terms of the medium effective viscosity (Newyear &
Martin 1997). Martin & Kauffman (1981) developed a viscous-plastic model to explain
the observed wave attenuation. They claimed that the viscous nature of grease ice
could arise from interactions among frazil crystals leading to the presence of an
energy sink in the wave dynamics. The authors did not present any estimate of
grease ice effective viscosity from their data. On the other hand, wave dispersion
and attenuation data of Newyear & Martin (1997) were consistent with a constant
viscosity value, comparable to that of glycerin at 0 ◦C, in the range of frequencies
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from 6.6 to 9.5 s−1 (Newyear & Martin 1999). The viscosity was estimated using
a two-layer wave propagation model, which represents grease ice as a viscous fluid
superimposed on inviscid water (Keller 1998).

The concept of bulk viscosity for grease ice holds because the size of the frazil
particles (∼ 0.1 cm) is much smaller than both the vertical scale of grease ice (10 cm
in the laboratory) and the horizontal scale of the travelling wave (from ∼100 cm in
the laboratory to hundreds of metres in the ocean) (Newyear & Martin 1999).

From the theoretical point of view, it is possible to obtain detailed information on
the behaviour of a suspension of disk-like particles in the velocity field of a gravity
wave only in the dilute limit. In this limit, the problem becomes that of the behaviour
of an individual particle in a given flow field, in the absence of interactions with
the other particles in suspension. Iterative approaches such as that of the differential
scheme (Bruggeman 1935) can then be used to obtain semi-quantitative information
in the high-volume-fraction regimes characteristic of grease ice.

A second simplification is obtained by disregarding inertia effects at the scale of
the ice platelets. Starting from the work of Jeffery (1922), much effort has been
devoted to the dynamics of an ellipsoidal particle under creeping flow conditions. The
importance of Brownian motion for the presence of an equilibrium particle orientation
distribution, and consequently for the existence of a uniquely defined bulk viscosity,
was already recognized by Taylor (1923). It turns out that, unless the particles are so
small that Brownian diffusion dominates, the external flow strongly influences the ori-
entation distribution and this effect cannot be disregarded for relatively large particles
like the ice platelets. As recognized by Bretherton (1962), this may lead, in flow regions
characterized by high strain and low vorticity, to the possibility of fixed orientation
regimes for the particles. Only more recently, however, have time-dependent situations
involving ellipsoids in suspension, come under scrutiny. In Zhang & Stone (1998),
the forces and torques acting on an oscillating disk in a quiescent fluid have been
calculated. In Szeri, Milliken & Leal (1992), the orientation dynamics of an ellipsoidal
particle under the effect of combined time-dependent vorticity and strain has been
analysed.

The calculation of the bulk viscosity of a dilute suspension of ellipsoids in a plane
shear was carried out in Leal & Hinch (1972), in the regime of small but non-zero
Brownian motion. The effective viscosity of a concentrated suspension of aligned
disks was studied in Sundararajakumar, Koch & Shaqfeh (1994), using slender body
theory arguments. In Phan-Thien & Pham (2000), a differential scheme approach was
used to calculate the effective viscosity in the concentrated regime assuming random
orientation of the ellipsoids. In all cases a time-independent situation was considered.

In the present paper, we shall consider the case of gravity waves in infinitely deep
water. In this case, it is possible to pass to a reference frame in which the flow is
time independent, and this eliminates the possibility of irregular orbits in orientation
space, as observed in Szeri et al. (1992) in the case of simple periodic flows.

This paper is organized as follows. In the next section, the orientation dynamics of
a Stokesian particle in a deep-water gravity wave will be elucidated. In particular, the
possibility of coherent collective motions in the suspension will be examined. In § 3,
the effective viscosity of a dilute ellipsoid suspension will be calculated, analysing its
dependence on the wave frequency and amplitude. In § 4 the merits and limitations
of a creeping flow approach to modelling the frazil ice dynamics will be discussed. In
§ 5, using a differential scheme, the results will be extrapolated from the dilute limit,
and will be compared with available data from wave-tank experiments. Section 6 will
be devoted to conclusions.
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2. Orientation of a disk-like particle in the velocity field of a deep-water
gravity wave

We consider a dilute suspension of rigid oblate axisymmetric ellipsoids, supposed
small enough that inertia be negligible at the particle scale. We also suppose that the
particles are free of external forces or torques and that the suspension is so dilute
that the effects of mutual interaction among particles are negligible. In this dilute
limit, the rheological properties of the suspension will change from the response of a
single particle to the time-dependent wave flow.

In order to represent the wave flow, we introduce a reference frame with the origin
at the water surface, the x1-axis along the direction of propagation of the wave and
the x2-axis pointing vertically towards the sea bottom. Using the hypothesis of small-
amplitude inviscid waves in infinitely deep water, we obtain the following velocity
field:

U1 = Ũ exp(−kx2) sin(kx1 − ωt),

U2 = Ũ exp(−kx2) cos(kx1 − ωt),

}
(2.1)

where Ũ is a typical value for the fluid velocity in the wave field.
The orientation dynamics in the presence of fore–aft symmetry will in turn be

determined by the balance between the strain rate E and the vorticity Ω of the
wave at the particle position, again provided the particle is sufficiently small to allow
linearization of the wave field on its scale. In the case of a revolution ellipsoid, with
symmetry axis identified by the versor p, the orientation dynamics will be described
by the Jeffery equation:

ṗ = Ω · p + G[E · p − ( p · E · p) p] + O((ka)2) (2.2)

where G is the ellipsoid eccentricity defined in terms of the particle aspect ratio
r = a/b, where a and b are respectively along and perpendicular to the symmetry axis,
by means of the relation

G =
r2 − 1

r2 + 1
.

For a disk-like particle we have clearly r � 1 and G � −1. For small-amplitude waves,
the particle displacement will be small with respect to k−1 and we can approximate the
instantaneous value of the strain felt by the particle by its value measured at the initial
position x. Furthermore, for linearized waves, the induced velocity field is confined
within a region whose thickness is of the order of the wave amplitude (defined as the
valley to crest semi-height): A � k−1. We can then approximate exp(−kx2) = 1. From
(2.1) we find easily the expression for the strain rate:

E = kŨ

(
cos(kx1 − ωt) − sin(kx1 − ωt)

− sin(kx1 − ωt) − cos(kx1 − ωt)

)
, (2.3)

while the vorticity Ω is identically zero thanks to the potential flow nature of the
inviscid wave field. Equation (2.3) describes a strain field rotating with frequency ω/2
around the x3-axis. Changing variables to a reference frame rotating with the strain,
the time dependence in E disappears and a non-zero vorticity is produced:

Ω̄ =
ω

2

(
0 1

−1 0

)
(2.4)
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Figure 1. Orientation of an ellipsoidal particle in a strain field rotating with angular velocity
ω with respect to the laboratory (x1-axis). For 0 � ω̂ � 1 the symmetry axis p is confined to
the strain plane x1x2. For ω̂ → 0, alignment with the strain instantaneous compressive direction
ψ = − π/4 occurs. For 0< ω̂ � 1, the symmetry axis of the particles lags behind by a constant
angle ψ , with ψ = −π/2 for ω̂ = 1. For ω̂ > 1 no stationary solution for ψ exists, corresponding
to the particle being unable to follow the rotating strain.

(we identify components in the rotating frame with an overbar). For each value of x1,
we choose the new variables in such a way that the strain rate is

Ē = kŨ

(
0 1

1 0

)
, (2.5)

corresponding to the strain expansive direction placed at π/4 with respect to the
rotating x̄1-axis. Introducing polar coordinates (see figure 1), and normalizing time

and vorticity with the strain strength e = kŨ , Jeffery’s equation (2.2) leads to the
following system of equations:

ψ̇ = −ω̂ − cos 2ψ,

θ̇ = − 1
2
sin 2θ sin 2ψ,

}
(2.6)

where ω̂ = −ω/2Ge and ḟ = df/dt̂ , t̂ = −Get . For ω̂ < 1,this system of equations has
equilibrium solutions (ψ, θ) = 1

2
(cos−1 ω̂ − nπ, mπ). Of these, only the one

ψ =
1

2
cos−1 ω̂ − π

2
+ nπ, θ =

π

2
+ nπ (2.7)

is stable and is approached in a time ∼ e−1. For ω̂ > 1, instead, choosing the time so
that ψ(0) = 0, we have the trajectories:

tan ψ(t̂) = −
(

ω̂ + 1

ω̂ − 1

)1/2

tan[(ω̂2 − 1)1/2 t̂],

tan θ(t̂) =

(
ω̂ + 1

ω̂ + cos 2ψ(t̂)

)1/2

tan θ(0).

 (2.8)

We thus have a high strain regime in which, as illustrated in figure 1, the particles
in suspension are all aligned with the local strain and rotate in a coherent fashion,
and a low strain regime in which the particles do not rotate, but rather they oscillate
around their natural orientation. As it is easy to see from (2.8), the transition from the
low to the high strain regime is characterized by the particle spending an increasing
amount of time, as ω̂ → 1, near (−π/2, π/2). This corresponds to the rotation period
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of the particle (ω̂2 − 1)−1/2 (always measured in the rotating frame) going to infinity,
as ψ = −π/2 becomes a fixed point for the system.

The linearized gravity wave theory allows us to write e = kŨ in terms of the wave
amplitude A defined as the valley to crest semi-height, the gravitational acceleration
g and the wave frequency ω, starting from the dispersion relation:

k =
ω2

g
(2.9)

and the expression for the typical wave velocity value:

Ũ = Aω. (2.10)

This leads to the expression for the strain strength e in the small-r regime corres-
ponding to G = −1: e = Aω3/g and to the condition for the existence of equilibrium:

ω �

√
g

2A . (2.11)

We thus see that in the case of gravity waves, the aligned particle case corresponds
to a high-frequency (or small-wavelength) limit. The same transition is observed
experimentally in the case of grease ice (see Martin & Kauffman 1981, pp. 307, 308),
with the crossover frequency at ω �

√
0.35g/A.

3. The bulk stress and the effective viscosity of the fluid–particle mixture
The bulk stress of a dilute suspension of axisymmetric ellipsoidal particles is given

by the law (Leal & Hinch 1972; Hinch & Leal 1975)

σ = P I+2µE+2µφ{2A〈 p p p p〉 : E+2B[〈 p p〉 · E+E · 〈 p p〉]+CE+F 〈 p p〉 · D} (3.1)

where µ is the dynamic viscosity of the pure fluid, P is the pressure, φ is the volume
fraction of the particles, A, B, C, F are dimensionless shape coefficients and D is
a term that takes into account Brownian motion effects. It is an open question
whether other effects, such as interaction with other particles, could be modelled by
a noise term. The presence of this term, independently of its amplitude, guarantees
that the memory of any initial particle orientation, including unstable equilibrium
points, is lost and a statistical equilibrium state, in an O(D−1) time, is eventually
reached.

Following Leal & Hinch (1972), we shall consider the small noise limit in which
D−1 is much longer than the other timescales of the process, which are given in
dimensionless form by (ω̂2 −1)−1/2. Over these timescales, the evolution of the process
will be therefore, to lowest order, that of the unperturbed system.

The second and fourth moments of p are calculated functions of the PDF
(probability density function) for the particle orientation ρ(θ, ψ, t). The A, B, C

coefficients may be obtained from Jeffery (1922), in terms of the following elliptic
integrals:

α′ =

∫ ∞

0

dλ

(b2 + λ)3
√

a2 + λ
, α′′ =

∫ ∞

0

λ dλ

(b2 + λ)3
√

a2 + λ
,

β ′ =

∫ ∞

0

dλ

(b2 + λ)2(a2 + λ)
√

a2 + λ
, β ′′ =

∫ ∞

0

λ dλ

(b2 + λ)2(a2 + λ)
√

a2 + λ
,
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where a and b identify the ellipsoid semi-axes parallel and perpendicular, respectively,
to the symmetry axis. More precisely

A =
α′′

2b2α′β ′′ +
1

2b2α′ − 2

β ′(a2 + b2)
, B =

1

β ′(a2 + b2)
− 1

b2α′ , C =
1

b2α′ .

In the case of disk-like (r � 1) particles, disregarding O(r) terms gives

A =
5

3πr
+

104

9π2
− 1, B = − 4

3πr
− 64

9π2
+

1

2
, C =

8

3πr
+

128

9π2
. (3.2)

Notice that this value of C differs at subleading order O(1) from the one in Leal &
Hinch (1972). As seen in the previous section, two orientation dynamics regimes are
possible and these affect the value of the angular averages entering (3.1). We consider
in detail the two regimes below.

From the stress σ , it is possible to calculate an effective viscosity µ̄ in terms of the
viscous dissipation in the suspension, exactly as is done with spherical particles:

µ̄ =
1

2

σ :E

E : E
:= (1 + Kφ)µ (3.3)

where K is called the reduced viscosity of the suspension.

3.1. Preferential orientation regimes: 0 � ω̂ � 1

In this regime, after a relaxation time ∼ e−1, all particles tend to align, in the rotating
frame, in the direction identified by (2.7). For small diffusivities, the variance of the
distribution around these fixed points will be D/e. As already mentioned, this state
of affairs corresponds, in the laboratory frame, to the particles rotating in a coherent
fashion with the wave field. The fourth- and second-order tensors 〈 p p p p〉 and 〈 p p〉
have a simpler form in the rotating reference frame with the x̄1-axis along p. In this
new frame of reference, the rate of strain tensor E takes the following form:

Ē = e

(
−

√
1 − ω̂2 ω̂

ω̂
√

1 − ω̂2

)
while the 〈 p p p p〉 and 〈 p p〉 tensors are

〈p̄i p̄j p̄kp̄l〉 = δ1iδ1j δ1kδ1l , 〈p̄i p̄j 〉 = δ1iδ1j

where δij is the Kronecker delta. Substituting into (3.1) and (3.3), the reduced viscosity
coefficient K , is easily obtained:

K = A(1 − ω̂2) + 2B + C. (3.4)

From (3.4), the dominant O(r−1) contribution to the viscosity is the ω̂-dependent
contribution proportional to A, while 2B +C = 1+O(r). For this reason, the reduced
viscosity K is characterized by a minimum at the crossover ω̂ = 1, at which K � 1
(compare with the spherical particle value K = 5/2 (Landau & Lifshitz 1959)).

3.2. Continuously rotating regime: ω̂ � 1

In the laboratory frame this regime corresponds to the particle oscillating around its
initial orientation, while slowly diffusing with respect to angle, under the effect of
Brownian couples. In the rotating frame, the problem can be mapped to that of an
ellipsoid in a plane shear: the equation of motion for a particle in the rotating frame
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(2.8) is identical to that of a particle with aspect ratio

s =

(
ω̂ − 1

ω̂ + 1

)1/2

(3.5)

in a plane shear ω = 2e. The equilibrium distribution of an ensemble of particles
whose orientation dynamics is described by (2.6), in the presence of an isotropic
Brownian couple, is then obtained from the theory of Leal & Hinch (1972), whose
main results are reported below.

The particle orientation is identified by the variables t̂ and c where t̂ is defined by
the first of (2.8) and gives the normalized time needed, on the Jeffery orbit starting
from the current values of θ and ψ , to go from ψ = 0 to the current value of ψ , while
c obeys

c =

(
ω̂ + cos 2ψ

ω̂ − 1

)1/2

tan θ. (3.6)

Thus, tan−1 c is the value of θ at ψ = π/2, and identifies the Jeffery orbit.
In these variables, the orientation PDF can be decomposed as

ρ(c, t̂) = ρ(t̂ |c)ρ(c). (3.7)

The marginal PDF ρ(c) is given by

ρ(c) = const. c[(H4c
4 + H2c

2 + H0)F ]−3/4 (3.8)

where

H4 = s2 + 1, H2 =
1

4
s2 +

7

2
+

1

4s2
, H0 =

1

s2
(s2 + 1)

and

F =



[
2H4c

2 + H2 − S

2H4c2 + H2 + S

](4−H2)/S

, H 2
2 > 4H4H0,

exp

[
2(H2 − 4)

2H4c2 + H2

]
, H 2

2 = 4H4H0,

exp[2S−1(H2 − 4) tan−1 S−1(2H4c
2 + H2)], H 2

2 < 4H4H0,

(3.9)

where S = |H 2
2 − 4H4H0|1/2.

The PDF ρ(c) is all that is needed, since the averages along the orbits of the tensors
p p and p p p p are already available (Jeffery 1922). In fact, from (3.3), the reduced
viscosity can be written as

K = A〈sin4 θ sin2 2ψ〉 + 2B〈sin2 θ〉 + C, (3.10)

but, from Jeffery (1922):

〈sin4 θ sin2 2ψ |c〉 =
2s2

(s2 − 1)2

[
c2(s2 + 1) + 2

[(c2s2 + 1)(c2 + 1)]1/2
− 2

]
and

〈sin2 θ |c〉 = 1 − 1

[(c2s2 + 1)(c2 + 1)]1/2
.

Completing the averages by means of (3.8), leads to behaviours for 〈sin4 θ sin2 2ψ〉
and 〈sin2 θ〉 shown in figure 2. Substituting into (3.10) with the expressions for the
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Figure 2. Plot of 〈sin4 θ sin2 2ψ〉 (a) and 〈sin2 θ〉 (b) vs. ω̂ in the low strain range.
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Figure 3. Reduced viscosity vs. normalized frequency ω̂ � ω/2e for a disk-like particle with
aspect ratio r =0.045. From ω̂ ∝ ω−2, the long-wave regime corresponding to random particle
orientation, occurs for ω̂ > 1 and the short-wave one, corresponding to coherent motion, for
ω̂ < 1. The horizontal line to the right gives the asymptotic value K(ω̂ → ∞).

coefficients A, B and C provided by (3.2), allows one to determine the reduced
viscosity of a dilute suspension of ellipsoidal particles, for arbitrary values of the
aspect ratio r and of the reduced frequency ω̂. As in the continuously rotating regime,
we see that the effective viscosity grows away from the crossover at ω̂ = 1, with the dip
becoming more pronounced as the aspect ratio r goes to zero. This is illustrated in
figure 3, in the case of a disk-like particle with a value of the aspect ratio in the range
characteristic for frazil ice. Notice that the asymptotic regime of random particle
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orientation ρ(θ, ψ) = sin θ/4π, leading to the expression for the reduced viscosity
(Phan-Thien & Pham 2000)

K =
4

15
A +

4

3
B + C,

has already been obtained for relatively small values of the reduced frequency ω̂ � 2.
We remark that, using the values C given in Leal & Hinch (1972), would have

produced an unphysical negative value of the reduced viscosity K at the crossover.

4. Grease ice
The analysis carried out so far assumed a dilute regime, which is very different

from the conditions typical of grease ice. Furthermore, the analysis assumed creeping
flow conditions, which may be problematic for millimetre size particles. As regards
the first issue, the differential scheme, originally proposed by Bruggeman (1935),
provides an analytical method to generalize the well-known Einstein formula for
the effective viscosity of dilute suspensions to finite concentrations (Brinkman 1952;
Roscoe 1952). More recently, the differential scheme has been exploited to study the
viscosity problems related to randomly oriented spheroidal inclusions in viscous fluids
(Phan-Thien & Pham 2000).

The basic idea is to calculate the increment of effective viscosity that is obtained
by adding a volume 	v of particles to a volume v0 of suspension already containing
a fraction v/v0 of particles. Let us indicate with ν = µ/ρw the kinematic viscosity of
the solvent and with ν̄ � µ̄/ρw the same quantity referred to the suspension, with ρw

the density of the solvent, assumed approximately equal to that of the suspension.
The increment in volume fraction is

	φ =
v + 	v

v0 + 	v
− v

v0

� (1 − v/v0)	v/v0 = (1 − φ)	v/v0

while the increment in effective viscosity ν̄ will be

	ν̄ =
Kν̄	v

v0 + 	v

leading to the differential equation

dν̄/dφ = Kν̄/(1 − φ), ν̄(0) = ν. (4.1)

The differential scheme assumes implicitly that viscosity renormalization is the only
effect of particle inclusion, which is strictly true only when the particle orientation
distribution and consequently the viscosity tensor are isotropic. In the opposite limit
ω̂ � 1, the theory of Sundararajakumar et al. (1994) could be applied.

In the case of microscopic (Stokesian) particles, (4.1) could be integrated from the
initial condition (corresponding to pure solvent) to the final concentration φ, using
for K the constant value obtained from (3.2), (3.4), (3.10) and the data in figure 2. In
this case, the solution would be

ν̄(φ) = ν(1 − φ)−K. (4.2)

(This equation allows a maximum packing fraction φmax = 1 which is above the real
value φmax � π/4 appropriate for stacked disks.) In the case of frazil particles, in the
integration of (4.1), there is an initial range of values of φ in which ν̄(φ) is likely
to be too small for the creeping flow approximation to apply; in that range, the
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stress coefficients and K will probably differ from their zero-Reynolds-number limit.
Hence K = K(φ) and (4.2) will provide at most an order of magnitude estimate for
the effective viscosity of grease ice.

To determine the importance of these effects, let us consider an individual ice
platelet in a suspension of effective viscosity ν̄. Creeping flow conditions require
stationarity and small particle Reynolds numbers. Introducing the effective Stokes
time τ̄S ∼ b2/ν̄:

ωτ̄S =
ωb2

ν̄
� 1, Rep =

eb2

ν̄
= ωτ̄SkA � 1, (4.3)

where e = kŨ is the strain strength. In the case of a dilute suspension, ν̄ = ν �
0.01 cm2 s−1; taking for the particle radius the value b ∼ 0.1 cm, we would obtain
from (2.9), (2.10), values for ωτ̄S ranging from 1 in open sea, to 10 in laboratory
conditions. As regards the condition on Rep , this is satisfied in open sea, where kA
is of the order of a few hundredths, but only marginally in the laboratory, where
kA ∼ 0.3 (Martin & Kauffman 1981). Clearly, the conditions of (4.3) will be satisfied
in the case where the suspending medium is grease ice, when µ̄ ∼ 102 cm2 s−1. This
has the consequence, in particular, that the results on the orientation dynamics of § 2
are expected to remain valid overall.

In the dilute case, the non-satisfaction of the conditions in (4.3) has another
consequence, namely inertia will cause relative particle–fluid motions and additional
dissipation in the suspension. We can obtain an estimate of this effect. The particle
velocity V , subtracted from the contribution from the buoyancy-produced drift, will
obey an equation in the form(

d

dt
+

1

τ̄S

Π ·
)

(V − U) � εr
dV
dt

+
1

τ̄S

F · U + f (4.4)

with ε = 1 − ρp/ρw � 0.1, ρp indicating the ice density, F = O((kb)2) accounting for
the Faxen force and Π the non-dimensionalized resistance tensor, whose components
are O(1) for the range of ωτ̄S we are interested in (Zhang & Stone 1998). The term
f is a noise contribution accounting for collision effects with other particles and
Brownian motion. All inertia effects in the wave flow and from the particle relative
motion are in first instance neglected.

The contribution to relative motion from collisions is important in bubbly flows
(Kang et al. 1997), but can be shown to be negligible in the present case due to the
regime Rep < 1. Let us show this. We can estimate the noise amplitude in a kinetic
approach by introducing first the collision frequency τ−1

c :

τ−1
c ∼ n	V b2 =

φ	V

a

where n= φ/ab2 is the numerical density of the particles, 	V ∼ |V − U | estimates
the typical collision velocity and b2 estimates the collision cross-section. Collisions
will be important provided τc < τ̄S; in this case, taking the noise as uncorrelated
〈f (t)f (t ′)〉 ∼ Dδ(t − t ′), we would have for its amplitude

D ∼ 	V 2τc ∼ a	V

φ
.

From (4.4), considering f dominant over the other terms on the right-hand side, we
obtain the estimate for the velocity 	V ∼ e(Dτ̄S)

1/2; this is the velocity difference in
the wave field sampled by the diffusing particle in the relaxation time τ̄S . Substituting
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ω̂ φ ω (s−1) A (cm) h (cm) q (m−1) ν̄ (cm s−2) K

1.4–1.5 0.30–0.34 14.9 1.45–1.55 6–7 5.3 ± 0.4 243–250 18.7 ± 0.2
1.3–1.4 0.29–0.34 14.9 1.6–1.7 7–8 6.6 ± 0.6 353–361 19.7 ± 0.3
1.2–1.3 0.28–0.32 14.9 1.7–1.8 8–9 5.8 ± 0.5 275–280 20.3 ± 0.2
1.2–1.5 0.28–0.34 14.9 1.5–1.8 7–8.5 1.6 ± 0.1 587–603 15.6 ± 0.1
1.2–1.5 0.34–0.35 14.9 1.5–1.8 8.5–10 7.5 ± 0.5 454–463 18.6 ± 0.3
1.4–1.4 0.35–0.44 10.7 3.0–3.1 14–16 3.5 ± 0.2 1010–1029 17.2 ± 0.2

Table 1. Experimental parameters.

the expressions for D and τ̄S , we find

	V ∼ ab2e2

φν̄

and substituting in the expression for τc and comparing with τ̄S , we see that the
condition τ̄S > τc is equivalent to Rep > 1. Interparticle collisions can then be neglected.

Passing to the contribution to V − U from direct acceleration by the wave field, we
see that, for waves in both laboratory (k ∼ 10−1 cm−1) and open sea (k ∼ 10−3 cm−1)
conditions, the Faxen force can be disregarded. Neglecting the noise in (4.4), we
obtain in this limit:

|V − U | ∼ εrŨ min(1, ωτ̄S).

The dissipation produced by a single particle due to its translation relative to the
fluid can be estimated from the product of the drag force in (4.4) and |V − U |
as ρwb3Π |V − U |2/τ̄S . The contribution from relative particle fluid rotation will be
smaller by a factor kb. The dissipation per unit volume will be therefore

Wtr ∼ µ̄φr

(
εŨ

b

)2

min(1, ωτ̄S)
2,

to be compared with the viscous dissipation Wν = µ̄(kŨ )2. We thus see that the
contribution to dissipation from relative particle–fluid motion is dominant in the
dilute case, but decreases with 1/µ̄ when ωτ̄S < 1. Taking values for µ̄ in the range
of hundreds, and φ ∼ 0.3, as observed in grease ice (see also table 1), we see that the
contribution to dissipation from relative particle-fluid motion is negligible, with the
ratio Wtr/Wν varying from 10−4 in the open sea to 10−8 in the laboratory.

In conclusion, inertia and non-stationarity are likely to contribute to the effective
value of the grease ice effective viscosity, but do not affect the frazil orientation
dynamics described in § 2. It is also confirmed that the dominant contribution to
dissipation and to the effective viscosity is the particle-induced stress and not particle–
fluid motions.

5. Comparison with experiments
We have compared the order of magnitude estimate for the effective viscosity,

provided by (4.2), with the wave tank data of Martin & Kauffman (1981). In their
experiment, concentrated suspensions of grease ice with thicknesses varying from 7
to 15 cm and volume fraction φ between 0.28 to 0.44, were allowed to grow in a 2 m
long tank previously filled with saline water to a depth of 41 cm. We selected those
measurements relevant to propagation of deep waves in a grease ice layer according
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to the criterion kh � π/2, where k is the open-water wavenumber and h is the ice layer
thickness (Phillips 1966). The relevant parameters of the experimental data we are
considering are listed in table 1. As already discussed, the differential scheme assumes
an isotropic suspension. Comparing the values of ω̂ in table 1 with figure 3, we see that
the data fall in the range where this assumption holds. Grease ice effective viscosities
were estimated from the measured spatial attenuation rate q = −A−1dA/dx1 using a
two-layer viscous fluid wave propagation model (De Carolis & Desiderio 2002). The
model can be inverted to obtain the effective viscosity ν̄ of the grease ice from the
experimentally observed values of the wave frequency ω, the attenuation rate q and
the thickness h and volume fraction φ of the frazil. The reduced viscosity K can then
be determined from (4.2) in order to estimate the corresponding particle aspect ratio
by means of (3.2), (3.4), (3.10) and the data in figure 2. From the data in table 1, we
obtain the estimate: r ∼ 2 × 10−2, to be compared with the individual observation
presented in Martin & Kauffman (1981) of a disk diameter of 0.1 cm and thickness
of 1–10 µm (see their figure 11). The corresponding range of variability for frazil ice
in a geophysical environment is 0.1–0.4 cm in diameter and 1–100 µm in thickness
(Kivisild 1970), corresponding to 0.25×10−4 <r < 0.1.

6. Conclusions
We have obtained predictions of the effective viscosity dependence of a suspension

of disk-like particles, in the velocity field of deep-water waves, of the aspect ratio
and the concentration of the particles. A key parameter appears to be, in the dilute
limit, the relative strength of the wave field strain, which parameterizes the wave
amplitude, and the wave frequency. For high-amplitude waves, collective alignment
of the particles in suspension with the wave field is possible, with the crossover to
this regime signalled by a deep minimum in the effective viscosity. This minimum is
lower than the effective viscosity in the case of spherical particles and can be smaller,
by orders of magnitude, than the value of the effective viscosity of a disk-like particle
suspension away from the crossover.

An interesting question is whether these behaviours are preserved away from
the deep-water wave regime we have considered in this paper. For shallow-water
waves, a rotating system in which the flow becomes time-independent no longer
exists, and irregular behaviours of the kind described in Szeri et al. (1992) become
possible.

Some of these results extrapolate from the dilute limit to the case of grease ice,
in particular the presence of a crossover to coherent alignment of the particles for
large-amplitude waves (Martin & Kauffman 1981). As regards the effective viscosity
of the grease ice, this appears to be dominated by the stress contribution from the
individual particles rather than from momentum transport from relative particle–fluid
motion. This is in contrast to other situations, e.g. bubble-laden flows (Kang et al.
1997), in which the second is the dominant effect. A creeping-flow-based calculation
of the effective viscosity, aided by the use of a differential scheme, to deal with the
high concentration regime, leads to results consistent with experiments.
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